Cerebra Legal MCP Server

Kubernetes MCP Server

Created By
Cerebra Legal MCP ServerMCP-Mirror
Content

Kubernetes MCP Server

Python Version License

A lightweight MCP server that provides natural language processing and API access to Kubernetes clusters, combining both kubectl commands and Kubernetes Python client.

https://github.com/user-attachments/assets/48e061cd-3e85-40ff-ab04-a1a2b9bbd152

✨ Features

  • Natural Language Interface: Convert plain English queries to kubectl commands
  • Full CRUD Operations:
    • 🆕 Create/Delete namespaces and pods
    • 🔍 Inspect cluster resources
    • ✏️ Modify labels and annotations
    • 🗑️ Graceful deletion
  • Dual Execution Mode:
    • kubectl command integration
    • Kubernetes Python client (official SDK)
  • Advanced Capabilities:
    • Namespace validation (DNS-1123 compliant)
    • Label filtering
    • Grace period control
    • Automatic command fallback

...Updating...

📦 Installation

Prerequisites

  • Python 3.8+
  • Kubernetes cluster access
  • kubectl configured locally
  • UV installed
# Clone repository
git clone https://github.com/ductnn/mcp-kubernetes-server.git 
cd mcp-kubernetes-server

# Create virtual environment (uv >= 0.1.8 required)
uv venv .venv

# Activate (Unix)
source .venv/bin/activate

# Install dependencies
uv pip install -r requirements.txt

Usage with AI Assistants

Claude Desktop

  • Open your Claude Desktop and choose Settings -> choose mode Developer -> Edit config and open file claude_desktop_config.json and edit:
{
    "mcpServers": {
        "kubernetes": {
            "command": "/path-to-your-uv/uv",
            "args": [
                "--directory",
                "/path-you-project/", // Example for me /Users/ductn/mcp-kubernetes-server
                "run",
                "main.py"
            ]
        }
    }
}
  • Then, restart your Claude Desktop and play :)

🤝 Contributing

  • Fork the project
  • Create your feature branch (git checkout -b feature/AmazingFeature)
  • Commit changes (git commit -m 'Add some amazing feature')
  • Push to branch (git push origin feature/AmazingFeature)
  • Open a Pull Request